A Note on the Symmetric Recursive Inverse Eigenvalue Problem
نویسندگان
چکیده
منابع مشابه
A Note on the Symmetric Recursive Inverse Eigenvalue Problem
In [1] the recursive inverse eigenvalue problem for matrices was introduced. In this paper we examine an open problem on the existence of symmetric positive semidefinite solutions that was posed there. We first give several counterexamples for the general case and then characterize under which further assumptions the conjecture is valid. 1. Introduction. In [1] several classes of recursive inve...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملThe Recursive Inverse Eigenvalue Problem
The recursive inverse eigenvalue problem for matrices is studied where for each leading principle submatrix an eigenvalue and associated left and right eigenvectors are assigned Existence and uniqueness results as well as explicit formulas are proven and applications to nonnegative matrices Z matrices M matrices symmetric matrices Stieltjes matrices and inverse M matrices are considered
متن کاملOn the Inverse Symmetric Quadratic Eigenvalue Problem
The detailed spectral structure of symmetric, algebraic, quadratic eigenvalue problems has been developed recently. In this paper we take advantage of these canonical forms to provide a detailed analysis of inverse problems of the form: construct the coefficient matrices from the spectral data including the classical eigenvalue/eigenvector data and sign characteristics for the real eigenvalues....
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2003
ISSN: 0895-4798,1095-7162
DOI: 10.1137/s0895479802408839